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A theory for the spatial development of linearly unstable, coupled

waves is presented in which both quasi-linear and mode coupling effects

are treated in a self-consistent manner. Steady state excitation of two

waves (with frequencies w., u)_) is assumed at the boundary x = 0, the

plasma being homogeneous in the y and z directions. Coupled equations

are derived for the x dependence of the amplitudes of the primary waves

(w., U)2) and the secondary waves, no), + muj™ (n and m being integers),

correct through terms of second order in the wave amplitude, e<£/T ,

but without the usual approximation of small growth rates. This general

formalism is then applied to the case of coupled ion acoustic waves

driven unstable by an ion beam streaming in the direction of the x axis.

If the modifications of the ion beam by the waves ("quasi-linear" effects)

are ignored, "explosive" instabilities (singularities in all of the

amplitudes at finite x) are found, even when all of the waves have positive

energy. If these wave-particle interactions are included, the solutions

are no longer singular, and all of the amplitudes have finite maxima, at

locations in reasonable agreement with experimental results of Taylor and

Ikezi.
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I. INTRODUCTION

This calculation was motivated by observations of Taylor and Ikezi ' on

the propagation of ion acoustic waves in presence of ion streaming. In these

(2~)experiments, a Double Plasma (DP) machine } was used to produce a broad beam

of ions streaming through a plasma with a velocity, V, somewhat larger than

1/2the ion acoustic speed c = (T /M) . Signals applied to the grid
o C

separating the driver plasma (the source of the ions) from the target plasma

excite ion acoustic waves which propagate into the target plasma. Over a

range of frequencies which depends on V, the ion beam makes the ion acoustic

waves unstable, and spatial growth is observed.

If two sinusoidal signals, with frequencies w , cj_, both lying within the

unstable range, are simultaneously applied to the grid, it is observed that

these waves grow; saturate at distances of 50 to 100 Debye lengths from the

grid; and then decay. In addition, a number of waves with frequencies nu. +

row- , where n and m are integers, also grow; saturate, further downstream;

and then likewise decay. The observed variation of the primary waves and the

largest of the secondary waves are shown in Fig. 1.

At first sight, these results seem eminently reasonable. Since all of

the ion acoustic waves have approximately the same velocity, strong mode

coupling should be expected, with a consequent coupling of energy from the

primary waves (which are driven by the free energy of the ion beam) to the

collection of secondary (beat) waves. Thus, mode coupling should explain the

observed saturation and decay of the waves.

In fact, however, a straightforward mode coupling calculation leads to a

somewhat surprising result. All of the waves, both primary and secondary,

become infinite at finite distances from the grid, as shown in Fig. 2.
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This apparent violation of energy conservation is, of course, a consequence

of neglecting the wave particle interactions, i.e., the perturbation of the

beam by the growing waves. If the beam distribution function is taken to be

the same at all x, an infinite energy reservoir is. available, and there is no

a priori limit on the wave amplitudes. While "explosive" instabilities are

well known in the theory of mode coupling when some of the waves have a

"negative" energy, the present case does not fall into that category.

Apparently, linear instability of the individual waves combines with the

amplification resulting from the mode coupling to produce the singular behavior

at finite distance.

When the "quasi-linear" modification in the beam distribution function

(or, more precisely, in the plasma dielectric function) is taken into account,

the amplitudes remain finite and show a spatial variation conistent with the

experimental results. Although the agreement is not completely quantitative

at present, additional experimental observations are planned.

We note the following features of our analysis, some of which have also

been considered in earlier papers on mode coupling:

1. We consider waves which are linearly unstable.

2. We study the "boundary value" problem (real u), complex k, in the

vernacular) rather than the more traditional, but experimentally less accessible,

initial value problem (real k, complex to) •

3. We eschew the usual restrictions to v,ery small growth rate (y « w

or Im k « Re k) or a very weak beam (n, « n' ). (Neither is satis-beam plasma

fied in the Taylor-Ikezi experiments.)

4. We analyze the problem in configuration space rather than wave-

number space.

5. We solve, self-consistently, the coupled mode coupling (wave-wave
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interaction) and quasi-linear (wave-particle interaction) problems.

Since the beam in the DP machine is very broad (of order 100 times Debye

length) and the primary waves have jc parallel to the drift velocity, with

w,, co_ below the ion plasma frequency, a one dimensional formulation in terms

of electrostatic waves is justified. The kinetic theory analysis required

in order to treat adequately the wave particle interaction is given in Section

II and coupled equations for the wave amplitudes are derived, assuming no

external electric or magnetic fields. These equations involve, in an essential

way, both the self-consistent (quasi-linear) d.c. electric field, E , generated

by the waves and the change, Ae, in the plasma dielectric constant due to the

wave-induced modification of the beam distribution function. Equations for En o

and Ae are derived in Section III. The results are specialized to the case of

ion acoustic waves in Section IV, and in Section V numerical solutions for the

wave amplitudes are given, first for the case where Ae is neglected, leading

to the explosive instabilities, and then for the complete problem, with Ae

(9)included. As already noted, the latter results are in qualitative agreement

with the experimental data.
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II. KINETIC FORMULATION

We start with the Vlasov and Poisson equations, assuming no external

electric or magnetic fields. For each species we have

3f/3t + v3f/3x + (q/m)E 3f/3v = 0 . (1)

(To minimize clutter in the notation, we omit species subscripts whenever this

will not cause ambiguity.) Poisson' s equation is written

3E/3x - 4ir / dv nqf = 0 (2)

where the symbol / denotes sum over species as well as integration over

velocity, and n is the average density of a species. Since we assume a

steady state system, with excitation at frequencies w1 and to. , the time

dependence of f and E can be written as a generalized Fourier sum over all

frequencies of the form

to = nw. + raw- . (3)nm l i

The x dependence remains to be found, but it is convenient to separate out

that part which follows from linear theory. Accordingly, we set

f(x,v,t) = fQ(x,v) + ̂  fu(x,v) exp[i(kwx-o)t)3 (4)

E(x,t) = EQ(X) + Iu'Eu(x) exp[i(kux-wt)] (5)

where the sum over w stands for a sum over all values, positive and negative,

of the integers n and m in (3), excluding those which would make u) = 0 ,

since the time independent terms are treated separately. We assume thatf, for

given a) , the linear dispersion relation

e(kw,w) = 0 (6)
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has at most one unstable root, '

k = K - 13
10 CO CO

with 3 > 0 . Here
CO

e(k,co) = 1 - ] dv(u /k)2 F'Q(V) (v-u)"1 , u = to/k (7)

is the dielectric function corresponding to x = 0, with f (0,v) = F (v) .

At other values of x we write the dielectric function as e + Ae where

Ae(k,to;x) = - j dv(iop/k)
2 [3Afo(x,v)/8v] (v-u)"

1

AfQ = f0(x,v) - fQ(0,v) = f0(x,v) - FQ(v) . (8)

[Choosing k to be the root of e + Ae rather than e simplifies the

formalism somewhat but greatly complicates the subsequent (numerical) solution

of the mode coupling equations due to the consequence x-dependence of k

and hence of the matrix elements.] The contour of integration in (7) and

(8) is, as usual, the real axis, when Im k is negative, the function being

analytically continued into the upper half k plane. At x = 0, the boundary

values

fo(0,v) = FQ(V) , with j dv FQ(V) = 1

and

E ,(0) = E . , E _(0) = E _ (9)wl col co2 J co2

are given, all other amplitudes being 0 there. In particular, we note that

the d.c. electric field, E (x) , is a self-consistent field, generated from

nonlinear effects, and not the consequence of any external fields. Although

the amplitudes E are most convenient for purposes of analysis, we note that

the experimentally measured amplitudes are in fact the quantities
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Ew(x) = 2E(o exp(3Mx) . (10)

so we shall give our final equations and numerical results in terms of these.

To solve the coupled, nonlinear equations which result from substituting

the Fourier series (4) and (5) into (1) and (2), we make an expansion in the

field amplitudes, treating all of the E and f as proportional to a small

parameter, ri . (The dimensionless small quantity is actually |eE /k T |.)

In addition, our ordering ansatz assumes that the amplitudes f and E are
f S \ *\

slowly varying, in the sense that (9f /9x) and (9E /3x) are of order n

We shall see that Af , defined in (8), is at most of order r| compared to
2

f and that E is of order r)o o

Substituting (4) and (5) into (1) and (2), we obtain equations for the

amplitudes f and E by equating to zero the individual Fourier coefficients

-u)'1 {(qE/m) 9f/9vw

1^, Ofu,/3v) Eu,, exp(iAkx) + (qEQ/m) 3fw/9v} , (11)

ikE + dE /dx = 4ir I dv nq f (12)
w to j w

where

k = k^ , k1 = k , , k" = ku,, , w" = w-w1 , Ak = k1 + k" - k .

(13)

The prime on the summation symbol means that u1 = 0 and to" = 0 are excluded.

From the time independent terms of (1) and (2) we obtain

v 3(Afo)/3x + (qEo/m) 9fo/9v = (-q/m) p^ (9fa)/3v)E_w exp(23x) , (14)

dEQ/dx = 4ir I dv nq AfQ . (15)

So far, of course, our equations are exact. To obtain an approximate
2

formulation, correct through terms of order n , we take advantage of the
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fact that the first term in the bracket on the right hand side of (11) is of
2

order r\ ; the second and third are of order n ; and the last is of order

3 2n (assuming, as will be established later, that E is of order ri ).

Consequently, in (11) we can drop the last terra and substitute in the second

and third terms

fu = (i/kHv-u)"
1 (qEu/m) (3fo/3v) , (16)

2
thus obtaining an expression for f correct to order n :

£u (x,v) = (i/kHv-u)'1 (q/m) {EJSfySv)* i (v/k) (v-u)"1 (3FQ/3v) (dEydx)

+ (iq/m) J'u, (E^.E^./k1) exp(iAkx) (3/3v) (F'Q (v)/ (v-u') ] }. (17)

In the second and third terms of (17) we have replaced f (x,v) by F (v) ;

2
since these terms are already of order n , this introduces errors of order

n , which we are dropping here. We now integrate this expression for f

over v and substitute it on the right hand side of (12), obtaining a typical

set of mode coupling equations,

D(u>) dEydx = ikAe E^ + ^, G(u' ,uj") E^.E ,, exp(iAkx) . (18)

Here Ae is given by (8) ;

D(co) = -k 3e(k,u)/3k = -2 - u j dv(u /k)2 F 'Q(v) (v-u)"2 ; (19)

f2)and the mode coupling matrix elements, G (cf. the e of Sagdeev and

Galeev ), are given by

dv(o)p
2/kk')(q/m) F'o/(v-u)

2(v-u') . (20)

While (18) is similar in form to the usual (temporal) mode coupling equations

with x in place of t as independent variable, we note two important differences
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i) The wave-particle effects (modification of f by the waves)

appear in the linear term involving Ae . :

ii) The quantities u and k are complex,, i.e. , we have made no

assumption of small growth rates.

Before we can attempt to solve (18) , we must adjoin to it an equation

for Ae , which is derived in the next section. For later reference, we note

that G(U)' ,w") can be replaced by an expression which is symmetric in the

to' and oj" modes by taking half the sum of G(u' ,01") and G(u)",w') :

= (2k1 k")"1 I dv(u 2q/m) [F'o(v)/(v-u):(v-u') (v-u")] • [1 + vAk/k(v-u)]

(21)

If we also go over from the E to the physically measured amplitudes E ,

defined in (10), we have as our basic mode coupling equations

D(u>) dEu/dx = [ikAe + BjHu)] E^ + ;| ̂ G(u>'X') Ê .Ê ,, exp(iAKx) .

(22)

The coefficients D and G , defined by (19) and (21), are independent of x

and, for a given set of frequencies, involve simply some integrals related to

f 8)the plasma dispersion function , explicit evaluations of these are discussed

in Appendix I. On the other hand, the coefficient Ae , defined by (8), is a

function of x, to whose determination we now turn.
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III. DETERMINATION OF E AND Aeo

If we drop the Ae term in (22), then the coupled differential equations

for the wave amplitudes, E , constitute a closed set, which does not involve

the time-independent variables f and E of (14) and (15). However, as

already noted, the resulting amplitudes, E , diverge at finite x so the

quasi-linear effects, represented in (22) by Ae , must be included. This

requires, in essence, the simultaneous solution of the quasi-linear problem,

represented by (14) and (15), together with the mode coupling problem, repre-

sented by (22). Moreover, the quasi-linear problem is more difficult than

the usual one in two respects:

i) We are dealing with a discrete spectrum of coherent waves and hence

cannot take advantage of the formal simplifications associated with averages

over the phases of a continuous spectrum of random waves.

ii) We are interested in the eventual application to ion acoustic waves

and must therefore take proper account of both ions and electrons.

Our analysis of the effect of the waves on f is complementary to the

approach of Dupree and Weinstock, •* who consider the actual particle orbit

modifications. We first discuss this quasi-linear sub-problem.

On the right side of (14) we can, to lowest order in n , replace f

by its leading term, (16), which gives an equation for Af :

v 9(AfQ)/3x = - (q/m) (3/3v) ' {foEQ
 + (iq/2m)' ̂  |Ej2 f'o/k(v-u)} (23)

where, as before,

fo(x,v) = FQ(V) + Af(x,v); FQ(V) = £0(0,v)

If we regard the wave intensity,
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= IE r/2
uu ' U)1

as a known function of x , then we can use (15) to express E as an integral,

over x and v , of Af ; substituting this into (23) leads to a differential-

integral equation for f , which can be solved by iteration on Af . To

lowest order, this is equivalent to simply replacing f by F on the

right-hand side of (23), thus obtaining an explicit expression for Af , and

then substituting this into (15) , thereby obtaining an ordinary differential

equation for E (x) . Actually, it is more convenient to work with the

derivative of this equation,

d2E /dx2 = 4ir | dv nq 8(Af )/3xo' ] ^ A cr

dv(co 2/v) {E F' + (iq/2m) £ I (3/3v)[F' /k(v-u)]} . (24)

Note that, notwithstanding the v factor in the integrand of (24), this

integral is non-singular: since Af must be finite at v = 0, the right

side of (23) must vanish at v = 0, and so the integrand of (24) has no singu-

larity at v = 0 . Of course, when we subsequently break up the right hand side

of (24), individual pieces may be singular, but there will be no difficulty

provided we use the same definition of the v = 0 singularity in all terms.

We shall choose the Cauchy principal value definition.

Our final approximation within this quasi-linear sub-problem is to neglect

the left side of (24). This charge neutrality approximation is justified if

the scale for E is large compared to the Debye length; it is clear from our

numerical results that this is in fact the case for the ion acoustic wave

application. We then have from (24)

EQ(X) = - {i | dvCcop
2q/2mv).Iw y3/3v) [F'Q/k(v-u)]} • { \ dv u/ F'̂ /v}'-1 (25)
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which shows that the scale of E is essentially that of the I and that, '

like I^ , EQ is of order n . [It then follows from (23) that 9(AfQ)/9x

is of order n and hence that Af is of order n ; this justifies,

a posteriori, our procedure of iterating (23) with respect to Af .]

The sum over to in (25) is one we shall encounter often. It proves

convenient to combine the terms w and -w , reducing the sum to one over

to > 0 , and to define

P(u),v) = (i/2)(9/9v) {[(kv-u)"1 - (k̂ -u))"1] F' }
o

=-Im (9/9v) [F'o/k(v-u)] , (26)

where we have used the property k = -k* . Then

E fx) = { | dv (0) 2q/mv) £ I P(o/,v)} • { 1 dv u> 2 F' /v}"1
0 J P u'>0 J P °

(27)

Having found E , we can return to (23) and find Af (replacing f

by F on the right side). However, for the mode coupling problem, (22), we

need only Ae , computed from Af according to (8). From (23) we have then

9(Ae)/9x =-J dv(w /k)2 [9(Afo)/9x](v-u)"
2

dv[u /k(v-u)]2 (q/mv) {EQF'o + (q/m) I I , P(o)',v)> .
" oo'>0

Since E is, itself, a sum over I , as we see from (27), we have, finally,

(9/9x) Ae(u>,x) = -(1/k2) J H(u,w') I (w1) (28)
u'>0

where

H ( w , u « ) = [ I dv(w 2q/m) F'o/v(v-u)2] [ | dv(u> 2q/m) P(u ' ,v) /v] [ / dv co 2 F'o /v]"

dv(u q/m)2 P(OJ' ,v)/v(v-u)2] (29)
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gives a set of coefficients which are independent of x, like the coefficients

D and G in (22).

In fact, we may consider Ae(co,x) as an additional amplitude, to be

treated on the same basis as the E (x) . Like the amplitudes E , Ae is
2

of order n , not n , as one might suppose. In fact, from (28) we see that

8(Ae)/8x is of order n , which implies that Ae itself is of order n

Adjoining (29) to (22) gives us the desired formulation in which mode coupling

and quasi-linear effects are included in a self-consistent, albeit approximate,

fashion. Our basic equations are thus the set (22) plus (28),

dE /dx = [3 + ikAe/D]E + Y' [G(co',co")/D] E ,E „ exp(iA x)
CO CO CO . . . C O C O

co'>co"

d(Ae)/dx = - (1/k2) I H(co,co') I (to1) (30)
to'>0

with

lr- I 2

and the constant coefficients, D, G, H defined by (19), (21), and (29). We

discuss in the next section the specialization of the formalism to the case of

ion acoustic waves.
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IV. UNSTABLE ION ACOUSTIC WAVES

We consider an infinite, homogeneous "beam" of ions, with density n, ,

streaming with velocity V > c through an infinite, homogeneous plasma

consisting of stationary "plasma" ions (density n ) and electrons (density

n = iv+n ). At x = 0 (the location of the exciting grid in the plasma) we

assume the ion distribution functions to be streaming Maxwellians,

FQi(v) = I. (K./7r
1/2a..) exp[- (v-V.)2/a.2] (31)

where j ranges over the two ion "species", beam and plasma, with

vb = v , vp = o

and

a. = (2T./M)1/2
J y

For the electrons, we simply assume a single Maxwellian,

Foe(v) = (ir^-
1 exp[-(v-Ve)

2/ae
2]

a = (2 T /m )1/2 . (32)
e e e

It is to be expected that for ion acoustic waves driven unstable by an

ion beam with V ̂  c , the details of the electron distribution function do

not matter much when T /T. » 1 , which is the case we want to consider here.

Thus, using for the electrons a double humped Maxwellian, with streaming

velocities 0 and V , should not give different results. Since we assume a

steady state current, the electron current must balance the ion current, i.e.,

with the single Maxwellian (32) we should choose V - aV . However, the

1/2
error due to choosing, instead, V =0 is of order (m/M) . This is most

6
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easily seen for the dielectric function e(k,u) . From (7), (31), and (32) we

have

e = 1 - k'2 {co2e Z'[(u-Ve)/ae]/ae
2 + I y.u)̂  Z'[ (u-V.)/a .]/a.2} (33)

where Z is the plasma dispersion function and £. denotes summation over

the ions (plasma and beam). At this point, it is convenient to choose our

units of x and t so that the quantities

k = (4Tme2/T ) , c = (T /M)1/2 , (34)
U " o tj

and to . = k, c are all equal to 1. Then

where

and we have

a 2 = 2T. , a 2 = 2/6
J J c

T. = T./T « 1 , 6 = m /M. ,J J e ' e' i '

e = 1 - k'2 {(1/2) Z'[(u-Ve)(6/2)1 / 2] + I (y j /2T.) Z ' C U

where

U.. = (u-V.)/(2T j)
1 / 2 . (35)

Since

Z'[(u-VJ(6/2)1 / 2] = - 2 + 6(61/2)
6

it does not matter whether we set V equal to UiV, or 0 . Thus, our

final expression is

e = 1 * k"2 [1 - I (R./2Tj) Z 'Ciy] (36)

and e = 0 defines k for to > 0 , with^ ^ k = -k* .to ' -co to

For the coefficient D(to) , defined by (19), the electronic contribution

1/2is smaller than the ionic ones by a factor of 6 , as shown in Appendix I,
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so we may drop it altogether. Then

D(u>) = - 2 - (u/k2) I v.(2T.r Z"(U..) (37)

[which also follows from differentiating (36)]. In the remaining coefficients,

~ 2G and H , the contribution of a given species contains factors of oj q/m
2

or (w q/m) from which it might appear that the electron contributions

dominate those of the ions, making the results sensitive to the choice of

electronic distribution function. We show in Appendix I that this is not

the case: the electron and ion terms are of equal order so far as 6 is

concerned, although the electron terms tend to be smaller by some power of

(T./T )• In any case, the changes in the electron terms consequent upon
1 C

choosing V = 0 rather than u^v are of order 6 ' . Explicit expressions

for G and H can most easily be given in terms of a multi-variable

generalization of the Z1 function,

Yn(srs2,...sn) = if 1/2 | dt [(t-s1)(t-s2)...(t-sn)]'
1 (d/dt) e"* . (38)

Such expressions are presented in equations (A10) through (A15) in Appendix I.

Specifically, we obtain a dimensionless form of the basic equations (30) if

we introduce a dimensionless potential, <j> :

Eu = - ik *u ' ' i(kT/e> *w ' (39)

Then (30) becomes, in our dimensionless units (w . = k = c =1)

d<j>u/dx = (3U + ikAe/D)^ + -| I ^ M(uX,o)") 4^, ^ exp[iAicx] , (40)

dAe(u,x)/dx = - I h(wX) |*.|2 , (41)
w'>0 u

where D(co) is given by (37); and

X ,(o") = i L(a),col,co")/kD(o)) , (42)
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L and h being given in terms of Y in Appendix I.

In the following section we give the results of the numerical solution of

the coupled equations (40) and (41) for the case of ion acoustic waves, with

parameters chosen to approximate the conditions of the Taylor-Ikezi experi-

ments. We shall see that if the quasi-linear effects, represented by (40),

are neglected - i.e., if we set Ae = 0 in (40) - then an explosive

instability results; including Ae gives results in qualitative agreement

with the experiments.

Regarding the character of the explosive instability, we cannot, as noted

earlier, properly speak of the "energy", positive or negative, of the individual

waves when the imaginary part of the phase velocity is not infinitesimally

small. However, our contention that the explosive instability is not the

familiar one associated with negative energy waves ' can be properly stated

in the following way. Having computed the matrix elements M(u),u)' ,o>") using

(42), (37), and (A10), we may consider the equations (40) with linear terms

3 and Ae set equal to zero. We find the amplitudes to be well-behaved,
U) '

oscillatory functions, with no singularities, i.e., they behave like coupled

waves whose energies all have the same sign. If, now, we introduce the

unstable linear terms, 3<j> with 3 > 0 , we immediately find an explosive

instability, the value of x at the singularity being smaller the larger the

value of 3 • Finally, we include the iAe<|> term, which has a negative

f 2real part which grows like dx|<j> | and hence prevents a singularity at

finite x.
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V. NUMERICAL RESULTS

We consider the case of ion acoustic waves with excitation frequencies

a) = 0.4, to = 0.25. (As in Section IV, we use units in which u ., k , and

c are equal to 1.) The beam strength is
o

^ = VVV = °-23 ;

the streaming velocity is

Vb = 1.67 ;

and the temperature ratios are

Tb =VTe = °'1 • Tp = Tp/Te = 0'°66 '

(These correspond to the Taylor-Ikezi experiments which had T = 3 eV ,
6

9 - 3n = 10 cm .) The values of u, k, D, L, M, and h for this choice of

parameters are given in Appendix I.

The results are best given in terms of the dimensionless potentials,

<j> , defined in (39). If we drop the Ae term in (40), then for three

waves (oJ1,a)9, and w_ = u)..-co7) we obtain the results shown in Fig. 2. (The
J. £• O 1. £

initial amplitudes of the <j> , as given in the figure caption, correspond

approximately to those of the Taylor-Ikezi experiment.) The explosive

instability is apparent and this feature persists if we include more waves,

with frequencies u) given by (3). Including the Ae term in (40) and solv-

ing the coupled set (40) and (41) for Ae and the wave amplitudes gives the

results shown in Fig. 3 for three waves. The inclusion of more waves does not

greatly change the behavior of the first three. Comparison with Fig. 1 indi-

cates a qualitative agreement with the Taylor-Ikezi experiments. Pending

further experiments, we cannot say whether the discrepancies are to be attributed

to third order effects, neglected here, or to experimental errors.
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VI. CONCLUSIONS AND DISCUSSION OF RESULTS

We find that a straightforward extension of mode-coupling theory to waves

of well-defined phase which are linearly unstable leads to explosive

instabilities (infinite amplitudes at finite distance). This phenomenon

appears to be different from the superficially similar one associated with

the coupling of positive and negative energy waves, in that here the energy

required to feed the explosive instability comes directly from the free energy

(in our case, the ion streaming) responsible for linear instability. Of

course, in the case of negative energy waves, the ultimate source of energy

is similar, so the distinction may be more formal than physical. When the

"quasi-linear" modification in free energy due to the wave growth is taken

into account, the amplitudes remain bounded and show a qualitative agreement

with experiments on ion acoustic waves. Although we deal here only with the

boundary-value problem (real o>, complex k) entirely similar results hold for

the complementary initial value problem (real k, complex to).

We conclude that, in general, both mode coupling and quasi-linear effects

must be included in even the lowest order non-linear theoretical treatment of

linearly unstable waves. We have considered here only the case of coherent

waves (meaning well-defined phase), but similar conclusions should obtain in

the case of a continuous spectrum of waves with random phases.

We are indebted to James Drake for assistance with the calculations.
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APPENDIX I

CALCULATION OF INTEGRALS AND COEFFICIENTS

We summarize here the algebraic considerations involved in computing the

coefficients D, G, and H which appear in (30), as well as the dielectric

function e , Eq. (7), which determines k , when the distribution functions

are those specified in (31) and (32).

The first point to be considered is that some of the integrals involve

2 2 2w , some a) q/m , and some (cu q/m) . This might make it appear that the

electron contributions dominate the ion terms in some of the coefficients.

While specific calculations show that this is not the case, it is useful to

establish this in a general way, as follows.

Consider first the coefficient D(to) , given by (19). We see that the

contribution of a given species, of mass m , temperature T , is proportional

to

m"1 I dv F'o(v)/(v-u)
2 = m"1 I dv F"o(v)/(v-u) . (Al)

We introduce a dimensionless variable, t = v/a , where a denotes the thermal

velocity for that species, and make use of the fact that F (v) can be written

as

FQ(v) = g(t)/a

and hence

F"Q(v) = g"(t)/a
3

where g is independent of T or m . The expression (Al) has then the form

(ma3)"1 f dt g"(t)(t-u/a)"1 (A2)

2
where the integral is bounded and generally of order 1. Since ma = 2T , the

1/2 3/2
contribution of a given species to D is proportional to m /T and the
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electron contribution is negligible. '

We next examine G , given by (21). Here, the contribution of a given

species to the terra independent of Ak is proportional to

m"2 f dv F'o/(v-u)(v-u')(v-u") % (ma
2)'2 [ dt g'/(t>u/a) (t-u'/a) (t-u"/a)

(A3)

and hence varies as T , independent of m . The same result holds for the

term proportional to Ak , since

v/(v-u) = t/(t-u/a) (A4)

is, again, independent of m . Thus, we expect the electron contributions to

~" 2
G to be smaller than the ion ones by (T./T ) ; in any case, they do not

dominate.

Finally, we consider H , defined by (29), which we write as

fit LI LJ 14 "\ /ui . (A r "^— ^n.n- — n_n. j / n _ v f t>>_)

where

dv (u) 2q/m) F'o/v(v-u)2

2
dv (u) q/m) P(co' ,v)/v

= / dv u 2 F1 /v
P o'

dv (u)pq/m)
2 P(u',v)/v(v-u)2 . (A6)

Using the same method of analysis as above, and noting that

P(w',v) = - Im O/3v)[F' /k'Cv-.u')] = a"4 P

with

P = Im (9/8t)[g'/k1 (t-u'/a)]

we have for the contribution of one species to H through H. the following:
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HI: m"2 I dv F'Q/v(v-u)
2 ^ T"2 I dt g'/t(t-u/a)2

H2: m"2 I dv P/v ~ T~2 f dt P/t

H3= m"1 f dv F'Q/v ̂  T"
1 f dt g'/t

H4= nf3 J dv P/v(v-u)2 <\- T~3 | dt P/t(t-u/a)2

As with G , the electron terms are, if anything, smaller than the ion terms,

by powers of (T./T ) .

In all of these integrals, of course, denominators like (t-u/a) really

cause no trouble, since the contour of integration is along the real t axis

and Im u is non-zero. In the electron terms where we will make the

approximation u/a -»• 0 , we let

(t-u/a)"1 -»• PCt-u/a)"1 ± i-rr 6(t-u/a) (A7)

where the sign agrees with that of Im u . The 1/t factors are to be taken

in the Cauchy principal value sense [cf. the discussion following (24)]. For
_2

denominators of higher order, like (t-u/a) , integration by parts (together

with a separation into partial fractions, if necessary) reduces the problem to

(A7). Alternatively, one can use

(t-z)'2 = (d/dz)(t-z)"1

For the electronic terms in these various integrals, we have u/a ^ c /a
, Q S G

1/2^ (m /M.) so they can, to good approximation, be evaluated at u = 0 , the
6 jL

1/2corrections being of order (m /M.) . The same consideration shows that
6 1

we can also take the electron streaming velocity, V , in (32) as equal to

zero, rather than UjV, > since with V, of order c this, too, represents a

1/2correction of order (m /M.)
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. We now give explicit expressions for the coefficients G and H in

terms of dimensionless integrals. First, we define a multi-argument generali-

zation of the plasma dispersion (or, more precisely, of its derivative):

dt [(t-SjKt-s^.-.U-s^r1 G'(t)

-t2 1/2G(t) = e /TT ' . (A8)

The contour of integration is understood to be the real axis, when s is

complex, whether Im s is positive or negative. For real s, the Cauchy

principal value is to be taken. If all of the arguments coincide, we have

Yn(s,s,...s) = (d/ds)n Z(s)

In particular

Y:(S) = Z'(s)

[Here Z is to be interpreted as the Z+ function (defined by

Z+(s) = if1/2 I dt e~t (t-s)"1

for Im s > 0 and analytically continued into the lower half s plane) for

Im s > 0 ; as the Z function (z (s) = Z (s*)*) for Im s < 0; and as

Re Z for s real.] If two of the arguments coincide, we have

p ViCŝ ,..̂ ) . (A9)

We also introduce a symbol for the Gaussian,

100 - e-

Then the distribution functions (31) and (32) are all of the form

Fo = yg(t)/a ; dFQ/dv = yg'/a
2
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with

s = (v-V)/a

For denominators like (v-u),v we have

v-u = a(s-U) ; U = (u-V)/a

v = a(s+W) ; W = V/a

Thus

P(u) ' ,v ) = (y/a4) Im (3/3s) [g1 /k' (s-U1)]

We then have from (21)

2k'k" G(u)'X) = (w2ie/M) | ds (q/e)(M/m)
2 (y/a4)

x [g'(s)/(s-U)(s-U')(s-U")][OAk/k) + (Ak/k)(u/a)/Cs-U)]

where M denotes ion mass and m, y, a, g carry an implicit species index.

We have also

ma2/M = 2T/M = 2c 2(T/T )
5 6

Going over to the dimensionless units (u> . = 1, c =1) we then have

L(u>X,w") = - 2k'k" G M/e = - (1/4) { ̂  (ŷ t̂ 2) [(1+Ak/k) Y3(U.. ,U» . ,U"..)

-K (Ak/k)[u/(2T..)1/2] Y4(U..,U .U'̂ U"..) - 8(l+Ak/k) } (A10)

where we have used the fact that Z'"(0) = 8 .

For the coefficient H we have from (AS) and (A6)

with

H = (e/M)2 h = (e/M)2 ( h / h ) (All)

ds (y/a4)(q/e)(M/m)2 g'/(s+W) (s-U)2

where the (s+W) denominator is to be taken as a Cauchy principal value, so
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that, in dimensionless units.

h, = (1/4) { I (y./T,2) U (U.,U ;-W) - 8 } ; (A12)
-1 J J ° J J

h0 =-co
2. I ds (y/a4)(q/e)(M/m)2(s+W)~

1(3/9s)[g'/k1(s-U')]

=-(1/4) Im \ ds y(T /T)2 (q/e) g'/k'(s+W)2 (S-U
()

t

or

h =-(1/4) Im { L (y.:/T.2) Y (U' ,-W ,-W ) - 8 } ; (A13)
^ J J J •> J J J

h, = (A ] ds (y/a2)(M/m) g'/(s+W)
Pi

or

h_ = (1/2) { I (y./T.) Re Z' (-W ) - 2} ; (A14)
° j J J

and

h4 =^i 1 ds (y/a6)(M/m)3(s+w)"1 (s-U)"2 Im (3/3's) g'A'(s-U)

=-(w2i/8) | ds y(Te/T)
3 [(s+W)~2(s-U)"2 + 2(s+W)"1(s-U)"3] Im g'/k'fs-U1)

or

h. =-(l/16i) y (y./T.3) [YC(-W.,-W.,U.,U.,U'4 z. .,/ j 5v j, Jt y ]t j

+ 2Y.(-W.,U.,U.,U.,U'.)/k' - (U'. *U»*. , k1 ->k'*)] . (A15)
5" JJ j' j' J' Jv/ v j J 'J

With the choice of parameters given in the caption of Fig. 1, the values

of u, k, and D obtained from (36) and (37) for the three wave approximation

are given in Table I. Note that Im u is typically 20% of Re u , which is

the reason we have eschewed the usual approximation of infinitesimal Im u .

The other coefficients needed for the system (40) and (41) are the h(u),u)')

defined by (All) through (A15). In the case of three waves, there are only

three mode coupling coefficients: M(co ) = M(to , w , u)_) ; M(oO = M(co ,w ,-u)3]

and M(u>_) = M(u_,eo -0)_) . These, together with the associated L values, are

also listed in Table I. Since (40) requires ikAe/D it is convenient to
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tabulate the quantity

£(u)X) = - ik hCooXJ/DCu) , (A16)

which is given in Table II for the case of three waves. As is to be expected

from our earlier discussion in this appendix, £ is dominated by the ion

terms because of the T /T and (T /T) factors in h through h as
6 6 J . H

1/2well as the (m /M.) weighting of the respective contributions to D .
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Table I. Mode coupling coefficients for three waves. The input parameters are

given in the caption of Fig. 1.

w u k D (GO) L (to) M (00)

0.40 0.945+0.1791 0.41-7.8xlO~2i 18.3-11.31 -2.39-3.831 -0.57-0.0071

0.25 0.966+0.1971 0.25-5.lxlO~2 i 52.5-25.61 0.73+3.231 1.13-0.301

0.15 0.974+0.2031 0. 15-3. lxlo"2i 156.3-68.71 . 1.59+7.731 1.22-0.191

0.0 0.979+0.2061

Table II. Quasiiinear coefficients, £(."u),o)''j . The input parameters are given

in the caption of. Fig. 1.

to' = .40 GO' = 0.25 to' = 0.15
L Z> o

.40 -.90 + .341 -.49 + .251 -.'28 + .161

0.25 -.48 + .151 -.27 + .121 -.16 + .0771

0.15 -.27 + .0771 -.16 + .0641 -.089 + .0421
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FIGURE CAPTIONS

Fig. 1. Wave amplitudes as a function of distance from the grid in the Taylor-

Ikezi experiments, with frequencies co = 0.4 oo . ; u)_ = 0.25 to . ;

w, = ui,-u>2 • The beam ion, plasma ion, and electron temperatures

are T, = 0.2 eV; T = 0.3 eV; T =3 eV. Also, V = 1.67 c and
D p 6 5

the ratio of beam density to plasma density is n,/n = 0.23, with n

- 109 cm"3 .

Fig. 2. Result of pure mode coupling calculation (sans quasi-linear effects)

for the same parameter values given in Fig. 1. The initial amplitudes

are <j>- = 0.01, 4>~ = 0.02. An explosive instability (all <j> •* °°)

occurs at the point marked E.I.

Fig. 3. Solution of the coupled equations (40) and (41) including both mode

coupling and quasi-linear effects, when three wave amplitudes are

included. The parameter values are the same as in Fig. 2, but no

trace of the explosive instability remains, so that a linear, rather

than logarithmic, scale can be used for <j> .
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